Fast Algorithms for Delta-Separated Sparsity Projection
نویسندگان
چکیده
We describe a fast approximation algorithm for the ∆-separated sparsity projection problem. The ∆-separated sparsity model was introduced by Hegde, Duarte and Cevher (2009) to capture the firing process of a single Poisson neuron with absolute refractoriness. The running time of our projection algorithm is linear for an arbitrary (but fixed) precision and it is both a head and a tail approximation. This solves a problem of Hegde, Indyk and Schmidt (2015). We also describe how our algorithm fits into the approximate model iterative hard tresholding framework of Hegde, Indyk and Schmidt (2014) that allows to recover ∆-separated sparse signals from noisy random linear measurements. The resulting recovery algorithm is substantially faster than the existing one, at least for large data sets.
منابع مشابه
A Fast Algorithm for Separated Sparsity via Perturbed Lagrangians
Sparsity-based methods are widely used in machine learning, statistics, and signal processing. Thereis now a rich class of structured sparsity approaches that expand the modeling power of the sparsityparadigm and incorporate constraints such as group sparsity, graph sparsity, or hierarchical sparsity. Whilethese sparsity models offer improved sample complexity and better interpr...
متن کاملA model based, anatomy dependent method for ultra-fast creation of primary SPECT projections
Introduction: Monte Carlo (MC) is the most common method for simulating virtual SPECT projections. It is useful for optimizing procedures, evaluating correction algorithms and more recently image reconstruction as a forward projector in iterative algorithms; however, the main drawback of MC is its long run time. We introduced a model based method considering the eff...
متن کاملSparsity-Aware Affine Projection Algorithm for System Identification
This work presents a new type of the affine projection (AP) algorithms which incorporate the sparsity condition of a system. To exploit the sparsity of the system, a weighted l1-norm regularization is imposed on the cost function of the AP algorithm. Minimizing the cost function with a subgradient calculus and choosing two distinct weighting for l1-norm, two stochastic gradient based sparsity r...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملNearly Linear-Time Model-Based Compressive Sensing
Compressive sensing is a method for recording a k-sparse signal x ∈ R with (possibly noisy) linear measurements of the form y = Ax, where A ∈ Rm×n describes the measurement process. Seminal results in compressive sensing show that it is possible to recover the signal x from m = O(k log n k ) measurements and that this is tight. The model-based compressive sensing framework overcomes this lower ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.06706 شماره
صفحات -
تاریخ انتشار 2017